Solution of Two-Point Boundary-Value Problems Using Lagrange Implicit Function Theorem
نویسندگان
چکیده
TWO-POINT boundary-value problems (TPBVPs) form an important ingredient in the solution of several multiphysics modeling and control analyses, including but not limited to guidance, navigation, and control problems of aerospace engineering. Several techniques to solve TPBVPs have been developed so far and the workhorse at the core of each has been Newton’s method (cf. Bryson and Ho [1]). In this Note, we present an implicit derivative Newton’s shooting method to solve a class of two-point boundary-value problems, most often encountered in the solution of optimal control problems. To motivate the developments of the paper, consider the optimal control problem
منابع مشابه
Generalizations and Applications of the Lagrange Implicit Function Theorem
The Implicit function theorem due to Lagrange is generalized to enable high order implicit rate calculations of general implicit functions about a nominal solution of interest. The sensitivities thus calculated are subsequently used in determining neighboring solutions about a nominal point, or in the case of a dynamical system, a trajectory. The generalization to dynamical systems, as a specia...
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کاملHigher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملUsing finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle
In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...
متن کامل